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Abstract. A Hamiltonian formulation of magnetic field line equations is derived for arbitrary 
magnetic field configurations in orthogonal curvilinear coordinate systems. The canonical 
equivalence of the different descriptions thus obtained are explicitly demonstrated and  
action-angle forms are  given in cases where there is a geometrical symmetry. Examples 
of Hamiltonians are  discussed for usual plasma machines like the tokamak a n d  the levitron. 
Finally generalisation to non-orthogonal coordinate systems is worked out. 

1. Introduction 

Magnetic coordinate systems (Boozer 1983, Carey and Littlejohn 1983) have been used 
in plasma physics for quite some time. These are the natural coordinates that can be 
employed to describe the geometry of magnetic surfaces in fusion machines (see, for 
example, Boozer 1985a, b, Miyamoto 1985). But the use of poloidal and toroidal 
quantities from the very beginning ties up  the procedure to particular field configur- 
ations (Channel 1984) and obscures the generality of the Hamiltonian description that 
can be obtained independent of the geometry of field lines or the particular coordinate 
system used. In  fact a time evolution under Hamiltonian flow and the equations for 
the lines of magnetic force both exhibit certain conserved quantities. It is the formal 
analogy between the respective conserved quantities that is exploited in the following 
to construct a Hamiltonian description in a very general way. 

The motivation for such work is manyfold and stems primarily from the fact that 
once a Hamiltonian description is achieved the motion of charged particles along the 
field lines becomes constrained to the usual phase space geometries allowed by the 
corresponding Hamiltonian. In particular if there is a geometrical symmetry in the 
magnetic field (say, invariance under translation in a particular direction) the Hamil- 
tonian becomes time independent and since this is a one degree of freedom system, 
it is trivially integrable. Thus particles starting out on a given magnetic surface 
characterised by a particular value of the Hamiltonian can never leave it. Of greater 
interest are the quasi-integrable systems where a small symmetry breaking perturbation 
is present (for example, an  oscillating magnetic field) and it becomes of practical 
importance (in fusion machines) to study the onset of chaos through the successive 
breaking of magnetic surfaces into chains of islands (Freis er a1 1973, Rechester er al 
1979, Lichtenberg and Lieberman 1983). The techniques of Hamiltonian dynamics 
like canonical perturbation theory, discrete mappings, K A M  stability, etc (Arnold and 
Avez 1968, Arnold 1979, Henon 1983) are then the essential tools of study. 
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2. Hamiltonian formulation 

Let us adopt an  orthogonal curvilinear coordinate system ( U , ,  u 2 ,  u 3 )  and let the 
components of a line element d s  be h l  d u , ,  h2 du2  and h3 du,. The lines of force are 
by definition curves whose tangents give the direction of the magnetic field B which 
means that the infinitesimal element d s  on the line of force is parallel to B. The 
components of these two vectors are therefore proportional 

Since V - B = 0, the lines of force are closed (no  singularity) and equation (1)  is 
globally valid. We want to put these equations into a Hamiltonian form. For this 
purpose we construct canonical coordinate q and momentum p as functions of u 1  and 
u., and single out u3 to be used as the time variable T. The derivations that follow do  
not depend on this choice and in fact we could choose any function of one of the 
coordinates as the time and  independent functions of the other two coordinates as q 
and p. Thus we have 

q ' q(u1  9 u2) 

P'P(U1, U 2 1  12) 

T ' U 3  

and furthermore we demand the existence of a locally single-valued function H ( 4 ,  p )  
such that the equations 

an dp aH dq  
ap d 7  dq d r  

_-  - -- - ( 3 a ,  b )  

when expressed in the original coordinates ( u I  , u2, u 3 )  become identical to the equations 
for the field lines (1). 

Moreover the equality of mixed derivatives 

which ensures that H is locally single valued, puts a further restriction on acceptable 
canonical coordinate and momentum, 

a dq  a d p  - - + - - = o 0 .  
aq  dT ap d r  (4) 

We will see presently that both equation (4) and the demand that equations (3a, b )  
are identical to equation (1) can be satisfied provided that we choose the Jacobian of 
the transformation from ( u l ,  u 2 )  to (9, p )  in such a way that the law of flux conservation 
in the system of equations (1) is automatically carried into the law of volume conserva- 
tion in phase space in the Hamiltonian system (2)  by the mapping itself. 

We have 
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The left-hand side of equation (5) is invariant under time evolution since time 
evolution can be looked upon as a succession of infinitesimal canonical transformations 
and each canonical transformation has Jacobian unity. The identification of U, as the 
time variable suggests that we look for a corresponding invariance under translation 
in the U, direction. If we choose U, to be along the direction of the magnetic field the 
flux passing through any section of a small tube (figure 1) oriented along the u3  
direction is conserved under translation in U,. 

Thus, h , h 2  du, duz B, is conserved and we see that the choice 

will reduce both sides of (5) to invariant quantities. The condition that the mapping 
be invertible imposes further conditions on the partial derivatives 

a (s ,p)  du,  - a(q,p)  a(u, ,u2) dq (:;) = a b , ,  Ulj(dU2) u d  a ( a P )  0 dp 
implies 

= U. a(q, P) a ( u ,  I U 2 1  

a(u, ,  uz) p )  
Multiplying by the inverse of one of the matrices we find, 

a u ,  39 
a u ,  JP d U 2  aP 

JP a u ,  - J-. 
J U I  as d U 2  a4 

a du,  a duz a 
ap dp  a u ,  dp  a u z  

- - J-  _- a U, _- aq - J -  

-- a p - - J -  _- au, 

In equations (3a, b )  we now make use of the following equalities: 

- 

a du,  a du2 a -----+-- - 
aq dq a u ,  dq auz  
d a du ,  d duz a ---+--+-- - 

dT au, du, a u ,  du, du, 

and make use of equations (8a-d)  and (1) to arrive at 

{q ,  w.,.,= hlh*h3B. vq 

{ P ,  w . , U . = ~ l h 2 h 3 B . V P  

( 7 )  

(8a-d)  

Figure 1. A small flux tube together with the local orthogonal coordinate system used. 
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where the curly brackets stand for Poisson brackets: 

aA a B  aA a B  
{A,  B},,,u2~--------. 

a u ,  au, au ,  au, 

Equations (9a, b )  together with (6) determine the possible structures of q , p  and 
the Hamiltonian H as functions of U , ,  u 2  and  u3.  Let us analyse them in the following 
simple cases and examine their canonical equivalence. 

3. Canonical equivalence 

The structure of the Jacobian matrix shows that if we choose q( p )  to be any of u1 and 
u2 the determinant reduces to a single term and  then integration yields p ( q ) .  Substitu- 
tion in equation (9a, b )  then gives us the Hamiltonian. Thus we have the following 
four possibilities: 

I 41 = U I  p1 = 1': hlh2B3 du, 

HI = 1"' h2h3B1 du, 

I1 

111 

IV 

p 2 =  - hlhzB3 d u ,  I 
I 

42 = U2 

hlh3Bz du ,  

q 3 = -  h,h2B,du2 

I H 2 = -  

P3 = U1 

p4= U2 q4= I"' h l h 2 B 3  d u ,  

H4= - [ " I  h l h 3 B 2 d u l .  

Inspection of the above equations reveal that the pair of equations I and 111 are 
related by the trivial canonical transformation 

41 + P2 

PI + -42 

with the generating function S = -q ,q2 .  
The pair of equations I1 and IV are related in a similar manner. It is interesting 

to find the generating function which takes us from I to 11. Let us assume S to be a 
function of q,  and p 2  and make a Legendre transformation to a new generating function 
F = - p  242 + S. Standard manipulations (Goldstein 1980) then yield 
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An S satisfying the above is obviously 

S = 1" 1" h,h2B3 du,  du2 

3683 

(10) 

and this checks with the relation 
as as 

H 2 =  HI+-= HI+- 
a7  a U3 

if we use the relation V B = 0, i.e. 

4. Action-angle variables 

If the magnetic field configuration has a translational symmetry along u3 then the 
corresponding Hamiltonian will be time translation invariant and the system reduces 
to a one degree of freedom conservative system which is integrable. It is possible to 
transform to action-angle variables in these cases so that the new Hamiltonian is a 
function of the conserved momentum only. Let us illustrate this with an example of 
a toroidal configuration of magnetic field lines. 

Adopting a toroidal coordinate system (figure 2)  and the corresponding line ele- 
ments dr, r d4, (R,+ r cos 4) dib the magnetic field in a tokamak machine can be 
written as (Solov'ev and Shafranov 1970) 

where h, = 1 +(TIRO) cos 4. For a machine of large aspect ratio (large major to minor 
radius ratio) h, - 1 and henceforth we will consider this case only. 

We observe that choice I 1  is already in action-angle form, 

q = 4  p = - I r  BIL d r  = -Bor2/2 

H = - R,B,(r )  dr. I' 
The Hamiltonian H is independent of 4 and hence of q. We regain the standard 

expression (Lichtenberg and Lieberman 1983) for H by introducing the canonical 

I' 

Figure 2. Toroidal coordinate system. 
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action variable J (  = 1 p dq)  and the rotational transform 7(J)( = l iT ( d d / d + )  d + )  
J 

H = /  r ( J ) d J .  (12) 

Similar considerations applied to a levitron field (Freis er a1 1973) 

where B, ,  P and Bo are constants, yield the Hamiltonian 

In r - rBoB, cos 4 H = - -  BoRo 
P 

which can again be written as a series in the canonical action J( = l p  dq) .  

5. Extension to non-orthogonal coordinate systems 

Sometimes it is useful to describe field configurations in terms of non-orthogonal 
coordinate systems (Morozov and Solov'ev 1966, Hamada 1959, 1962). Let (x ' ,  x2, x') 
be such a system and as usual the upper suffixes will denote contravariant quantities 
and the lower suffixes covariant quantities. 

The field line equations and the relation V * B = 0 when expressed in this general 
coordinate system (Weinberg 1972) become 

dx '  dx' dx' - Bl B 2 -  B3 

1 8  - - ( & B ' ) = O  
&j axi 

where g is the determinant of the covariant metric tensor g,. Flux conservation through 
a tube oriented along the x3 direction yields 

This reduces to (6) if we remember that in an orthogonal system the covariant 
components V, and the ordinary components p, of an arbitrary vector are related by 
the formula 

V, = h,V! = h f V '  

and the covariant metric tensor reduces to 

(no sum). 2 
g, = A I S ,  

The equations corresponding to (9a, b )  now become 

Equations (15a, b )  together with (14) now determine the Hamiltonian structure of 
the field configuration. 
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6. Conclusion 

We have shown that it is possible to cast the equations for magnetic field lines into a 
Hamiltonian form in a very general way through a mappping of the coordinates. By 
demanding that the conservation laws are fulfilled in the mapped space, we have tied 
down the Jacobian of the mapping. We have also given an  analysis of various 
canonically equivalent Hamiltonian forms and finally the problem has been solved in 
a general non-orthogonal coordinate system. 
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